Square-root Nyquist filters for three different excess bandwidths

How to Design Nyquist and Square-Root Nyquist Pulse Shaping Filters

The radio spectrum is a very precious resource like real estate and must be utilized judiciously. Pulse shaping filters control the spectral leakage of the transmitted signal in a wireless channel due to the strict restrictions to comply with a spectral mask. This is even more important for the upcoming 5G wireless systems which are based on a variety of wireless transmission protocols (such as mobile networks, Internet of Things (IoT) and machine to machine communications) combined in one comprehensive standard. Even for wired channels, there is always a natural bandwidth of the medium (copper wire, coaxial cable, optical fiber)

Continue reading
Three different cases for carrier frequency offset

What is Carrier Frequency Offset (CFO) and How It Distorts the Rx Symbols

In Physics, frequency in units of Hz is defined as the number of cycles per unit time. Angular frequency is the rate of change of phase of a sinusoidal waveform with units of radians/second. \begin{equation*} 2\pi f = \frac{\Delta \theta}{\Delta t} \end{equation*} where $\Delta\theta$ and $\Delta t$ are the changes in phase and time, respectively. A Carrier Frequency Offset (CFO) usually arises due to two reasons. The video below also explains this concept. [Frequency mismatch between the Tx and Rx oscillators] No two devices are the same and there is always some difference between the manufacturer’s nominal specification and the

Continue reading
OFDM slices the spectrum just like a bread

A Beginner’s Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.  The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can prove useful for technical persons not wanting to deal with too much technicalities, such as DSP experts outside communications, computer programmers, ham

Continue reading
Multipath components with large Doppler shifts compared to the signal bandwidth

Slow and Fast Fading in Wireless Channels

We discussed the idea of fading in wireless channels in a previous article. To understand different types of fading in the context of time variations, refer to the figure below that shows a multipath channel. Slow Fading A slow motion scenario is illustrated in the figure below where three multipath components are arriving with Doppler shifts $F_{D,i}$ from the carrier frequency. In this scenario, the magnitudes of $F_{D,i}$ are small and hence observe very little spreading of the cumulative spectrum. This can be understood by recalling that when two sinusoids with two different frequencies $F_1$ and $F_2$ are added, the

Continue reading
A discrete-time PLL with a PI loop filter and an NCO consisting of a phase accumulator and a Look-Up Table (LUT)

Phase Locked Loop (PLL) in a Software Defined Radio (SDR)

IBM Watson and Google DeepMind are the most complex computers that, some believe, will try to run the world in a distant future. A PLL on the other hand is the simplest computer that actually runs so much of the world as a fundamental component of intelligent electronic circuits. The PLL was invented by the French engineer Henri de Bellescize in 1932 when he published his first implementation in the French journal L’Onde Electrique. A Phase Locked Loop (PLL) is a device used to synchronize a periodic waveform with a reference periodic waveform. In essence, it is an automatic control

Continue reading