## FMCW Radar Part 3 – Design Guidelines

The Bloom’s Taxonomy describes the levels of mastery one attains in a field. Its last two stages are Synthesis and Evaluation. This is where the masters can be differentiated from the experts. In a job interview, for example, a good technique to judge a candidate’s ability is to ask them where the system in question breaks. A little learning is a dangerous thing Drink deep, or taste not the Pierian spring There shallow draughts intoxicate the brain And drinking largely sobers us again While the first two parts of the FMCW radar series addressed the lower levels, Part 3 is where we get into a system evaluation framework. In Part 1, we described how a radar estimates the range of

## FMCW Radar Part 2 – Velocity, Angle and Radar Data Cube

In Part 1 of FMCW radar series, we described how a radar estimates the range of one or more stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In a wonderful 1991 paper "Wireless Digital Communication: A View Based on Three Lessons Learned", Andrew Viterbi summarizes the Shannon theory for digital communications in the form of 3 lessons, the first of which was the following. "Never discard information prematurely that may be useful in making a decision until after all decisions related to that information have been completed." The applications of this

## FMCW Radar Part 1 – Ranging

This is Part 1 of a 3-Part series in which we describe how an FMCW radar finds the range of multiple stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In his book Multirate Signal Processing, Fred Harris mentions a great problem solving technique: "When faced with an unsolvable problem, change it into one you can solve, and solve that one instead." We will see in this article how an FMCW radar is one of the most beautiful applications of this approach. The apparently logical method to measure the range of an