Bat echolocation principle

FMCW Radar Part 1 – Ranging

This is Part 1 of a 3-Part series in which we describe how an FMCW radar finds the range of multiple stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In his book Multirate Signal Processing, Fred Harris mentions a great problem solving technique: "When faced with an unsolvable problem, change it into one you can solve, and solve that one instead." We will see in this article how an FMCW radar

Continue reading
Multiple objects at different speeds for an FMCW radar

FMCW Radar Part 2 – Velocity, Angle and Radar Data Cube

In Part 1 of FMCW radar series, we described how a radar estimates the range of one or more stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In a wonderful 1991 paper "Wireless Digital Communication: A View Based on Three Lessons Learned", Andrew Viterbi summarizes the Shannon theory for digital communications in the form of 3 lessons, the first of which was the following. "Never discard information prematurely that may be

Continue reading
Maximum velocity in an FMCW radar

FMCW Radar Part 3 – Design Guidelines

The Bloom’s Taxonomy describes the levels of mastery one attains in a field. Its last two stages are Synthesis and Evaluation. This is where the masters can be differentiated from the experts. In a job interview, for example, a good technique to judge a candidate’s ability is to ask them where the system in question breaks. A little learning is a dangerous thing Drink deep, or taste not the Pierian spring There shallow draughts intoxicate the brain And drinking largely sobers us again While the first two parts of the FMCW radar series addressed the lower levels, Part 3 is

Continue reading
A trellis for implementing Viterbi algorithm

Maximum Likelihood Sequence Estimation (MLSE Equalizer)

In the discussion on a wireless channel, we saw that an increased amount of Inter-Symbol Interference (ISI) occurs for high data-rate wireless systems that impacts the system performance to a significant extent. The performance of a linear equalizer suffers from spectral nulls. A Decision Feedback Equalizer (DFE) recovers much of the performance losses due to ISI but it is susceptible to error propagation. In 1972, David Forney published a paper titled "Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference" in which he proposed the idea of sequence estimation. For this purpose, there was an implicit assumption

Continue reading