How Errors Lead to New Discoveries

In the book "Where Good Ideas Come From", the author Steven Johnson mentions some stories on how errors lead to new scientific breakthroughs which I think would be interesting for radio/wireless enthusiasts. The first among them is what laid the foundation for electronics and radio broadcasting. Audion (Triode) Vacuum Tube In the summer of 1900 a twenty-seven-year-old aspiring inventor named Lee de Forest moved to Chicago, rented a one-room apartment on Washington Boulevard, and took a day job translating foreign articles on wireless technology for Western Electrician magazine. The translation work was informative: a major exposition on wireless technology that

Continue reading
Logic behind Mueller Muller TED

Mueller and Muller Timing Synchronization Algorithm

Proposed in 1976, Mueller and Muller algorithm is a timing synchronization technique that operates at symbol rate, as opposed to most other synchronization algorithms that require at least 2 samples/symbol such as early-late and Gardner timing error detectors. All of these are feedback techniques that operate within a PLL. Feedforward methods such as digital filter and square timing synchronization are also feasible due to powerful digital signal processing that avoids feedback problems such as hangups. The most confusing thing communication engineers and radio hobbyists find about Mueller and Muller algorithm algorithm is the cross product in its expression: matched filter

Continue reading
Flowgraph output

FSK Demodulation in GNU Radio

Frequency Modulation (FM) is one of the oldest communication techniques for high fidelity transmission. Its digital counterpart, Frequency Shift Keying (FSK), also plays a crucial role in applications requiring low receiver complexity. In an FSK scheme, digital information is transmitted by changing the frequency of a carrier signal. It can also be mixed with Chirp Spread Spectrum (CSS) for low-power long-range communication as used in LoRa PHY. Binary FSK Binary FSK (BFSK) is the simplest form of FSK where the two bits 0 and 1 correspond to two distinct carrier frequencies $F_0$ and $F_1$ to be sent over the air.

Continue reading
A general QAM detector with respective waveforms at each block

Quadrature Amplitude Modulation (QAM)

Quadrature Amplitude Modulation (QAM) is a spectrally efficient modulation scheme used in most of the high-speed wireless networks today. We discussed earlier that Pulse Amplitude Modulation (PAM) transmits information through amplitude scaling of the pulse $p(nT_S)$ according to the symbol value. To understand QAM, two routes need to be traversed. Route 1 We start the first route with differentiating between baseband and passband signals. A baseband signal has a spectral magnitude that is nonzero only for frequencies around origin ($F=0$) and negligible elsewhere. An example spectral plot for a PAM waveform is shown below for 500 2-PAM symbols shaped by

Continue reading
Blocks of a simple binary communication system

A Simple Communication System

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." Claude Shannon – A Mathematical Theory of Communication Our main purpose is to transfer digital information – which is a sequence of bits 0’s and 1’s – from one system to another through a communication channel. Let us return for a moment to the concept behind simple digital logic where logic 0 can be assigned to one voltage level while logic 1 to another. Provided the static discipline is followed, all our system electronics has to do is

Continue reading