Alfred North Whitehead said, "Civilization advances by extending the number of important operations which we can perform without thinking of them." In today’s world, it is easy to take no notice of the level of process automation integrated into our lives. To have an idea of how things were in the early days, signal processing technology to sort out the radar picture on a map was not available and only a dot or a line could be generated on the screen representing a detected target. A radar operator had to stare at a screen for their whole shift to raise
Continue readingTag: Rx-Architecture
Top 5 Software Defined Radios (SDR) for RF Experimentation
In this article, I describe 5 of the most popular SDRs available for RF experimentation today. As a 6th member of this list, I include a surprisingly common and free SDR that can be used for your fun radio projects. Table of Contents Background Where We Came From Top SDRs 5. Universal Software Radio Peripheral (USRP) 4. LimeSDR 3. HackRF One 2. ADALM-Pluto 1. RTL-SDR 0. A Free SDR We start with a little bit of background and where we came from. Background Software Defined Radio (SDR) has revolutionized wireless communication in the same way Microsoft revolutionized the scope of
Continue readingDirect Conversion (Zero-IF) Receiver
The frontend of the transceiver plays a crucial role in determining the ultimate system performance. In a previous article, we described how a superheterodyne architecture helps in enhancing the selectivity and sensitivity of the receiver. Some of the main issues with a superheterydone receiver are the image frequency and a large form factor due to multiple conversion stages. Today we discuss a direct conversion architecture, also known as zero-IF and homodyne. Recall from the concept of frequency domain that a real sinusoid at the Local Oscillator (LO) output has two impulses in its spectrum, one at a positive frequency $+F_{\text{LO}}$
Continue readingDirect Digital Synthesizer (DDS)
A Direct Digital Synthesizer (DDS) is an integral part of all modern communication systems. It is a technique to produce a desired waveform, usually a sinusoid, through employing digital signal processing algorithms. As an example, in the transmitter (Tx) of a digital communication system, a Local Oscillator (LO) is required to generate a carrier sinusoid that upconverts the modulated signal to its allocated frequency in the spectrum. On the receive (Rx) side, another local oscillator downconverts this high frequency signal to baseband for further processing. Such a process is shown in the Tx and Rx block diagrams of a Quadrature
Continue readingThe Heterodyne Principle and the Superheterodyne Receiver
During World War I, Edwin Howard Armstrong invented the superheterodyne Rx as an alternative to the Tuned Radio Frequency (TRF) receivers that moved a tunable filter to the desired signal. His purpose was to overcome their limitations in regard to selectivity and sensitivity. To understand the principle of a heterodyne receiver, a pictorial representation is of utmost importance. While this is generally true for all concepts, there are specific issues of spectral translations in receiver architectures that require nice and clear figures. This is how I proceed below. The Heterodyne Principle Instead of employing a tunable bandpass filter that is
Continue reading