In the article on pulse shaping, we described the excess bandwidth, also known as roll-off factor, as the extra fractional bandwidth required to shape the spectrum. As it turns out, this excess bandwidth is also crucial for accomplishing timing synchronization in single-carrier systems due to its participation in generating spectral timing lines. Spectral Timing Lines Since a data stream consists of a sequence of 1s and 0s, the signal waveform is not a pure clock. Instead, a series of 1s and 0s appear in random order. The purpose of timing synchronization is to extract a clock out of this waveform.
Continue readingQAM Constellations in Digital Communication Standards
Quadrature Amplitude Modulation (QAM) is one of the most spectrally efficient modulation schemes. This is why it is used in a wide range of digital and wireless communication systems. Recently, Ref. [1] describes a list of QAM schemes used in the standards as below which I think can be useful for an interested reader. Standard QAM Alphabet Size $M$ Bits/Symbol $\log_2 M$ Digital Video Broadcasting – Cable (DVB-C) 16 to 256 4 to 8 Digital Video Broadcasting – Cable 2 (DVB-C2) 16 to 4096 4 to 12 Digital Video Broadcasting – Terrestrial (DVB-T) 16 and 64 4 and 6 Digital
Continue readingCDMA or OFDM
Reading about interference cancellation techniques today, I recalled an interesting article by Sridhar Vembu titled Two Philosophies in CDMA: A Stroll Down Memory Lane. Vembu is the founder and CEO of Zoho Corporation, a venture which has turned him into a billionaire. He spent time both in academia (at Princeton) and in industry (at Qualcomm) working with the likes of Sergio Verdu in one camp and Andrew Viterbi in the other. Here are some excerpts from his article which is not available online anymore at the time of this writing. I have now worked a little over 10 years in
Continue readingWhy the Constant e Arises in Complex Plane as a Rotation
In the tutorial on how complex numbers arose, we asked three questions. The first two were answered in the same article while the answer to the third question, repeated below, is explained here. Why is the expression $e^{i \theta}$ a rotation of 1 by $\theta$ radians on a unit circle? Is it possible to make sense out of a number like $2.71828^{\sqrt{-1}\cdot\theta}$? The constant e is a special number discovered by Jacob Bernoulli while studying compound interests. It appears in many other forms as well which are all related to each other but that topic is a complete account in
Continue readingFMCW Radar Part 2 – Velocity, Angle and Radar Data Cube
In Part 1 of FMCW radar series, we described how a radar estimates the range of one or more stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In a wonderful 1991 paper "Wireless Digital Communication: A View Based on Three Lessons Learned", Andrew Viterbi summarizes the Shannon theory for digital communications in the form of 3 lessons, the first of which was the following. "Never discard information prematurely that may be
Continue reading