A description of a real space-time code

Understanding Space-Time Codes: Alamouti Scheme

In major cellular and wireless networks today, space diversity is employed with the help of multiple Tx antennas and/or multiple Rx antennas giving rise to Multiple Input Multiple Output (MIMO) systems. There are three different modes in which multiple antennas can be deployed: Beamforming Spatial Multiplexing Space-Time Coding In this article, we discuss space-time coding that achieves Tx diversity through multiple antennas at the Tx and simple linear processing at the Rx. This simplicity made this technique quite suitable for the past generations of cellular and other infrastructure based networks. There are two main kinds of space-time codes: Space-Time Block Codes (STBC) and Space-Time Trellis Codes (STTC). In general, STTC offer a better performance than STBC at a cost of

Continue reading
An intuitive way to understand the maximum ratio transmission

Maximum Ratio Transmission (MRT)

In Maximum Ratio Combination (MRC), our focus was on combining the signals from multiple antennas at the Rx side. Here, we will see how a similar system can be developed with multiple antennas at the Tx side. As our first consideration, we attempt to replicate the results of Rx diversity in a scenario where there are multiple Tx antennas and a single Rx antenna. This is commonly known as a Multiple-Input Single Output (MISO) system. Assume that there are $N_T$ Tx antennas available and only a single Rx antenna as shown in the figure below. This is a dual problem of 1 Tx antenna and multiple Rx antennas. Since our focus is on one symbol, we can temporarily remove the

Continue reading
Constructive and destructive interference arising from the different delays of multipath

Small-Scale Fading in a Wireless Channel

Small-scale fading is a phenomenon that arises due to the unguided nature of the wireless medium. Dramatic variations in signal amplitude occur at the Rx from constructive and destructive interference of multipath components originating from the surrounding environment that give rise to small-scale fading. This is the main challenge for designing efficient high-rate wireless communication systems which spawned an array of research activities in the past 50 years aimed to bring the wireless transmission rates closer to their wire counterparts. The technologies for 5G systems have been chosen with the benefit of experience gained from actual implementations over these years. Delay Spread To understand how the channel fading phenomenon arises in a wireless channel, consider a modulated waveform in the

Continue reading
Maximum Ratio Combining (MRC) cancels the phase and grades the magnitudes according to each channel gain

Maximum Ratio Combining (MRC)

In the discussion on diversity, we described in detail the idea of space diversity through an example of Selection Combining (SC). Maximum Ratio Combining (MRC) is another space diversity scheme that embodies the concept behind generalized beamforming — the main technology in 5G cellular systems. Let us find out how. Setup Consider a wireless link with 2 Tx antenna and 2 (or more) Rx antennas as shown in the figure below. At each symbol time, a data symbol $s$ is transmitted which belongs to a Quadrature Amplitude Modulation (QAM) scheme. To focus on the events happening within one symbol time only, we have dropped the time index $m$ from the modulation symbol $s[m]$ here. In this setup, $r_1$ is the

Continue reading
Diversity implies two or more independent replicas of the same information

Multiple Antenna Techniques

When computing approaches the physical limits of clocking speeds, we turn towards multi-core architectures. When communication approaches the physical limits of transmission speeds, we turn towards multi-antenna systems. What exactly are the benefits that led to scientists and engineers choosing multiple antennas as the foundation of 4G and 5G PHY layers? While having spatial diversity was the original incentive for adding antennas at the base stations, it was discovered in mid 1990s that multiple antennas at Tx and/or Rx sides open up other possibilities not foreseen in single antenna systems. Let us now describe three main techniques in this context. Beamforming Beamforming is the principal technology on which physical layer of 5G cellular networks is based. There are two different

Continue reading