Bat echolocation principle

FMCW Radar Part 1 – Ranging

This is Part 1 of a 3-Part series in which we describe how an FMCW radar finds the range of multiple stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In his book Multirate Signal Processing, Fred Harris mentions a great problem solving technique: "When faced with an unsolvable problem, change it into one you can solve, and solve that one instead." We will see in this article how an FMCW radar

Continue reading
Wideband differentiator frequency and impulse responses

Design of a Discrete-Time Differentiator

Many signal processing algorithms require computation of the derivative of a signal in real-time. Some of the examples are timing recovery, carrier frequency synchronization, FM demodulation and demodulation of LoRa signals. An analog or digital filter that computes such a derivative is known as a differentiator. Before we design such a discrete-time differentiating filter, let us review some of the fundamentals. A Derivative The following quote is attributed to Heraclitus, a Greek philosopher, from 535 BC. Change is the only constant in life. This was brought into the realm of science by Newton and Leibniz. The purpose of science is

Continue reading
Low pulse width and higher resolution

The Power of Pulse Compression

Human eyes can only see in the visible part of the electromagnetic spectrum. Radar (Radio Detection and Ranging) is a device that extends our ability to detect the environment far beyond what is allowed by the visual nervous system, see the article on Frequency Modulated Continuous-Wave (FMCW) radars. Today we talk about the idea of pulse compression and the role it plays in target detection. As opposed to a Continuous-Wave (CW) radar, a pulsed radar transmits a short burst of energy followed by a period of silence during which it listens for the echo received from the target. As shown

Continue reading
A discrete-time FM demodulator block diagram with atan2 and derivative filter

Frequency Modulation (FM) and Demodulation Using DSP Techniques

Frequency Modulation (FM) is as old as the history of wireless communications itself. The past few decades saw the rise of digital signal processing in all spheres of life that pervaded even the implementation of analog modulation schemes. Today many of the FM systems are built using discrete-time techniques instead of the conventional circuitry as described below. Frequency Modulation In digital communications, data is sent through altering a characteristic of an electromagnetic wave such as amplitude, frequency or phase in discrete steps (e.g., $M$ number of levels). Such systems are known as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)

Continue reading
Multiple objects at different speeds for an FMCW radar

FMCW Radar Part 2 – Velocity, Angle and Radar Data Cube

In Part 1 of FMCW radar series, we described how a radar estimates the range of one or more stationary targets. In Part 2, we talk about estimating the velocities of several moving targets and their directions through forming a structure known as the radar cube. Part 3 presents system design guidelines for an FMCW radar. In a wonderful 1991 paper "Wireless Digital Communication: A View Based on Three Lessons Learned", Andrew Viterbi summarizes the Shannon theory for digital communications in the form of 3 lessons, the first of which was the following. "Never discard information prematurely that may be

Continue reading