Data symbols riding on the subcarriers experience a rotation due to residual carrier frequency offset and sampling frequency offset

Effect of a Sampling Clock Offset on an OFDM Waveform

In an earlier article on the impact of a sampling clock offset on a single-carrier waveform, we explained the nature of a Sampling Clock Offset (SCO), i.e., a difference in sampling clock frequency between the Tx and the Rx. This is also known as a symbol timing frequency offset. The meaning of a sampling clock offset for a slow Rx clock that skips some samples within an interval is visually demonstrated in the figure below. In the context of OFDM systems, a previous article describes how the normalized Carrier Frequency Offset (CFO) and the normalized Symbol Timing Offset (STO) affect

Continue reading
Computation of the metric involves a correlation sum at a time difference of half symbol duration

Timing Synchronization in OFDM Systems

Orthogonal Frequency Division Multiplexing (OFDM) has been the vehicle driving most high rate wireless communication systems in the world today. Some of the notable examples are our WiFi, 4G and 5G technologies. See the interesting LoRa PHY for modulation techniques based on frequency shift – chirp spread spectrum that utilize many of the concepts from OFDM for algorithm design. As a background, we have also discussed before the impact of a timing error on an OFDM signal. It was observed that an integer timing offset does have affect the performance as long as it within certain boundaries. A fractional timing

Continue reading
The effect of symbol timing offset on an OFDM symbol

Effect of Timing Mismatch in OFDM Systems

Timing synchronization is one of the most fascinating topics in the field of digital communications. The impact of symbol timing offset has been discussed in the context of single-carrier systems before. The intuition behind how an OFDM system works is also presented in a previous article. However, the problem of timing synchronization is quite different in OFDM systems as compared to single-carrier systems due to the nature of the waveform. Let us explore how a timing error impacts the demodulated waveform in such a scenario. To avoid using many indices, we skip the OFDM symbol index $m$ in the following

Continue reading
OFDM subcarriers in frequency domain


Reading about interference cancellation techniques today, I recalled an interesting article by Sridhar Vembu titled Two Philosophies in CDMA: A Stroll Down Memory Lane. Vembu is the founder and CEO of Zoho Corporation, a venture which has turned him into a billionaire. He spent time both in academia (at Princeton) and in industry (at Qualcomm) working with the likes of Sergio Verdu in one camp and Andrew Viterbi in the other. Here are some excerpts from his article which is not available online anymore at the time of this writing. I have now worked a little over 10 years in

Continue reading
Experimental setup for low SNR receiver

Design of a Low-SNR Receiver

Wireless communication is energy inefficient due to the nature of the medium that spreads out energy in an unguided manner, as opposed to guided media like optical fiber and coaxial cable. To avoid wastage of power, one solution is to lower the transmit (Tx) power but then the receiver is left with the herculean task of efficiently demodulating the receive symbols at a low SNR. This article describes the design and implementation of one such receiver. Background The physical layer of a receiver system consists of three major parts, namely the frontend, the inner receiver, and the outer receiver. The

Continue reading