Future predictions

Machine Learning – The Big Picture

Machine learning is probably the defining technology of the past decade. As with all walks of life, it is playing an increasingly significant role in existing and future wireless networks. In this article, we explore the big picture of this exciting field. Nature vs Man Humans have always been interested in the workings of a mind, replicated by machines in many science fiction stories. During their investigations on Artificial Intelligence (AI, of which machine learning is a subset), many scientists observed that the machines need not copy the exact brain but a functional level performance is good enough that can

Continue reading
Known training sequence (a preamble) is prepended, or training can also be inserted periodically within the message

Basics of Synchronization

In every digital communication system, the Tx has the easier role of signal generation while the Rx has the tougher job of figuring out the intended message. Just like solving a puzzle told by someone. Estimating and compensating for the frequency, phase and timing offsets between Tx and Rx oscillators is one such challenge. The solution can be designed depending on many factors such as some part of data is known (called a ‘training sequence’) or not, the synchronizer needs to be one-shot or continuously updating, and so on. Known Data Availability Depending on the availability of known data, synchronization

Continue reading
A view of time-frequency-space grid in a communication system

How Multiple Antennas Sample the Signal

Once upon a time, an antenna was viewed as a simple device to transmit and receive an electromagnetic wave, much like a battery the sole purpose of which is to provide electrical power. A set of antennas, however, can be viewed from a new angle as follows. Sampling in Time Domain An Analog-to-Digital Converter (ADC) is a device that samples an analog signal in time domain to create a corresponding sequence of numbers. Similarly, a Digital-to-Analog Converter (DAC) gets a sequence of numbers as an input to generate a reconstructed analog signal. As an example, a rectangular pulse shape is

Continue reading
Eye diagram for a 4-QAM modulated signal and a simple channel impulse response

Impact of Multipath on the Received Signal

In this article, we describe the impact of multipath caused by the wireless channel on the signal arriving at the receiver from a constellation viewpoint. Recall that an eye diagram, a transition diagram and a scatter plot are the stethoscopes of a communication system and hence it is imperative to bring in that perspective for a Tx signal convolved with the channel impulse response. This is because a wireless channel can be seen as a Finite Impulse Response (FIR) filter with the result that the sampled Rx signal is a convolution between taps of this FIR filter and the Tx

Continue reading
Beat frequency sinusoid and its spectrum

Spectrum of a Sinusoid

In this article, we derive the spectrum of a complex sinusoid that acts as the basis for all spectra. In fact, the very definition of the Fourier Transform, whether continuous or discrete, comes from the perspective of a complex sinusoid. Therefore, exploring this derivation will be useful in everything else we learn about DSP. For an in-depth understanding of complex signals and I/Q processing, you can read the following two articles (the option of downloading them as PDF is available). The origin of complex numbers and signals I/Q signal processing Let us start with the continuous-time case. A Continuous-Time Sinusoid

Continue reading