Electromagnetic spectrum

On TeraHertz (THz) Band for Wireless Communication

Larger bandwidth has been the single most contributing factor in higher data rates throughout the history of wireless communication. In the past decade, this resulted in expansion towards mmWave bands that were adopted in 5G systems. Now the trend is continuing towards Tera Hz (THz) bands where large swathes of bandwidth are available for instantaneous and seamless transfer of huge amounts of information. This is because symbol rate $R_M$ is directly proportional to the bandwidth in digitally modulated signals. \[ R_M=\frac{1}{T_M} \propto B \] This is shown in the figure below where a high data rate implies a short symbol

Continue reading
A line plot in 3D

An Intuitive Guide to Linear Regression

We have described before how supervised learning can help us predict a continuous-valued output or organize the input into discrete categories, commonly known as regression and classification problems, respectively. In this article, we describe linear regression and leave the classification algorithms for a future post. What is Linear Regression? Suppose that you are a young investor living in a region with cold climate. One day an idea flashes in your mind that perhaps the shares in the regional stock market climb linearly with the temperature: the better the weather, the higher the prices. You already know what the temperature is

Continue reading
A comparison of the input to a symbol-spaced versus fractionally-spaced equalizer

A Classification of Equalization Techniques

We have seen before how a wireless channel distorts the Rx signal. The main task of DSP/comms engineer is to remove the Inter-Symbol Interference (ISI) from the Rx samples and recover the correct symbols. Equalization refers to any signal processing technique that eliminates or reduces this ISI before symbol detection. The output of an equalizer should be a Nyquist pulse for a single symbol case from which digital data can be recovered. A conceptual block diagram of such a process is shown below. The equalizer performs the bulk of the signal processing operations required at the Rx for proper demodulation.

Continue reading
Synchronization circuit for a Minimum Shift Keying (MSK) modem

Carrier and Clock Synchronization in MSK Signals

Minimum Shift Keying (MSK) is a versatile and spectrally efficient digital modulation scheme. On this website, I have previously written a tutorial on MSK in some detail. We saw how MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of Continuous-Phase Modulation (CPM). We also explored how it can also be cast as Offset Quadrature Phase Shift Keying (OQPSK). In designing a real communication system, the design of modulators and demodulators is the easy part. The main difficulty arises from acquiring synchronization with the incoming signal. Today we investigate the carrier and timing

Continue reading
Individual and cascade frequency responses as well as group delays of the IIR and all-pass filters combination

FIR vs IIR Filters – A Practical Comparison

When it comes to practical applications, digital filter design is one of the most important topics in digital signal processing. Today we discuss a critical question encountered in filter design: how to compare the Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Since there is no clear winner, answering this question enables a designer to choose the right solution for their product. A brief comparison of FIR vs IIR filters is now explained below. Computational Complexity It is well known that most practical signals are simply sums of sinusoids. This implies that signals with sharp transition in time

Continue reading